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Abstract

The causal Markov condition (CMC) is a postulate that links observations to causality. It describes
the conditional independences among the observations that are entailed by a causal hypothesis in
terms of a directed acyclic graph. In the conventional setting, the observations are random variables
and the independence is a statistical one, i.e., the information content of observations is measured in
terms of Shannon entropy. We formulate a generalized CMC for any kind of observations on which
independence is defined via an arbitrary submodular information measure. Recently, this has been
discussed for observations in terms of binary strings where information is understood in the sense of
Kolmogorov complexity. Our approach enables us to find computable alternatives to Kolmogorov
complexity, e.g., the length of a text after applying existing data compression schemes. We show
that our CMC is justified if one restricts the attention to a class of causal mechanisms that is adapted
to the respective information measure. Our justification is similar to deriving the statistical CMC
from functional models of causality, where every variable is a deterministic function of its observed
causes and an unobserved noise term.

Our experiments on real data demonstrate the performance of compression based causal inference.

1 Introduction

Explaining observations in the sense of inferring the underlying causal structure is among the most important
challenges of scientific reasoning. In practical applications it is generally accepted that causal conclusions
can be drawn from observing the influence of interventions. The more challenging task, however, is to infer
causal relations on the basis of non-interventional observations and research in this direction still is considered
with skepticism. It is therefore important to thoroughly formalize the assumptions and discuss the conditions
under which they are satisfied. For causal reasoning from statistical data, Spirtes et al. (2001) and Pearl
(2000) formalized the assumptions under which the task is solvable. With respect to a causal hypothesis in
terms of a directed acyclic graph (DAG) the most basic assumption is the causal Markov condition stating
that every variable is conditionally independent of its non-descendants, given its parents,

xj ⊥⊥ ndj |paj ,

for short. Pearl argues that this follows from a “functional model” of causality (or non-linear structure equa-
tions), where every node is a deterministic function of its parents pa j and an unobserved noise term nj (see
Fig. 1), i.e.,

xj = fj(paj , nj) . (1)

The causal Markov condition is then a consequence of the statistical independence of the noise terms, which
is called causal sufficiency. It can be justified by the assumption that every dependence between them requires
a common cause (as postulated by Reichenbach (1956)), which should then explicitly appear in the causal
model. From a more abstract point of view, condition (1) can be interpreted as saying that the node x j does
not add any more information that is not already contained in the parents and the noise together. If we restrict
the assumption to discrete variables, the corresponding information measure can be, for instance, the Shannon
entropy, but also other measures could make sense.

In (Janzing & Schölkopf, 2007) the probabilistic setting is generalized to the case where every observa-
tion is formalized by a binary string xj (without any statistical population). The information content of an
observation is then measured using Kolmogorov complexity (also “algorithmic information”) which gives



rise to an algorithmic version of (conditional) mutual information. The corresponding functional model is
given by a Turing machine that computes the string x j from its parent strings paj and a noise nj .
The algorithmic information theory based approach generalizes the statistical framework since the average
algorithmic information content per instance of a sequence of i.i.d. observations converges to the Shannon
entropy, but on the other hand observations need not be generated by i.i.d. sampling.

Unfortunately, Kolmogorov complexity is uncomputable and practical causal inference schemes must
deal with other measures of information. In Section 2 we define general information measures and show that
they induce independence relations that satisfy the semi-graphoid axioms (Section 3). Then, in Section 4,
we phrase the causal Markov condition within our general setting and explore under which conditions it
is a reasonable postulate. To this end, we formulate an information theoretic version of functional models
observing that their decisive feature is that the joint information of a node, its parents and its noise is the
same as the joint information of its parents and noise alone. We demonstrate with examples how these
functional models restrict the set of allowed causal mechanisms to a certain class (Section 5). We emphasize
that the choice of the information measure determines this class and is therefore the essential prior decision
(which certainly requires domain knowledge). Thus, when applying our theory to real data, one first has to
think about the causal mechanisms to be explored and then design an information measure that is sufficiently
“powerful” to detect the generated dependences.
Section 6 discusses a modification for known independence based causal inference that is necessary for those
information measures for which conditioning can only decrease dependences. Section 7 describes one of
the most important intended applications of our theory, namely information measures based on compression
schemes (e.g. Lempel-Ziv). Applications of these measures using the PC algorithm for causal inference
to segments of English text demonstrate the strength of causal reasoning that goes beyond already known
applications of compression for the purpose of (hierarchical) clustering.

2 General information measures
In this section we define information from an axiomatic point of view and prove properties that will be useful
in the derivation of the causal Markov condition. We start by rephrasing the usual concept of measuring
statistical dependences. Let X be a set of discrete-valued random variables and Ω := 2X be the set of
subsets. For each A ∈ Ω let H(A) denote the joint Shannon entropy of the variables in A. For three disjoint
sets A, B, C the conditional mutual information between A and B given C then reads

I(A : B|C) := H(A ∪ C) + H(B ∪C)−H(A ∪B ∪C)−H(C) . (2)

The set of subsets constitutes a lattice (Ω,∨,∧) with respect to the operations of union and intersection and
H can be seen as a function on this lattice1. We observe that the non-negativity of (2) can be guaranteed if

H(D) + H(E) ≥ H(D ∨E) + H(D ∧ E) ,

for two sets D, E ∈ Ω. This submodularity condition is known to be true for Shannon entropy (Cover &
Thomas, 2006). Motivated by these remarks, we now introduce an abstract information measure defined on
the elements of a general lattice. Throughout this paper let (Ω,∧,∨) be a finite lattice and denote by 0 the
meet of all of its elements.

Definition 1 (information measure)
We say R : Ω→ R is an information measure if it satisfies the following axioms:

(1) normalization: R(0) = 0 ,

(2) monotonicity: s ≤ t implies R(s) ≤ R(t) for all s, t ∈ Ω ,

(3) submodularity: R(s) + R(t) ≥ R(s ∨ t) + R(s ∧ t) for all s, t ∈ Ω .

Note that submodular functions have been considered in different contexts, see for example (Lovász, 1983;
Matus, 1994; Madiman & Tetali, 2008).
Based on R we define a conditional version for all s, t ∈ Ω by

R(s|t) := R(s ∨ t)−R(t).

In analogy to (2), R gives rise to the following measure of independence:

Definition 2 (conditional mutual information) For s, t, u ∈ Ω the conditional mutual information of s and
t given u is defined by

I(s : t |u) := R(s ∨ u) + R(t ∨ u)−R(s ∨ t ∨ u)−R(u).

We say s and t are independent given u or equivalently s ⊥⊥ t |u if I(s : t |u) = 0.

1Also the information measures that are presented in this paper can all be rephrased as functions on the lattice of
subsets it is nevertheless notationally convenient to formulate the theory with respect to general lattices.



Since the join on lattices is associative and commutative, for ease of notation we write R(s, t, u, . . .) instead
of R(s ∨ t ∨ u ∨ . . .) as well as R(S) := R(s1 ∨ . . . ∨ sn) for a subset S = {s1, . . . , sn} ⊆ Ω. Further
I(s1, . . . , sn : u) is to be read I((s1 ∨ . . . ∨ sn) : u). The following Lemmas generalize usual information
theory.

Lemma 1 (non-negativity of mutual information and conditioning) For s, t, u ∈ Ω we have

(a) I(s : t |u) ≥ 0 and (b) 0 ≤ R(s|t, u) ≤ R(s|t).
Proof: (a) By definition, I(s : t|u) ≥ 0 is equivalent to R(s, u) + R(t, u) ≥ R(s, t, u) + R(u). Defining
a = s ∨ u and b = t ∨ u and using associativity of ∨ we have a ∨ b = s ∨ t ∨ u. Further, using Lemma 4 in
Ch.1 from (Birkhoff, 1995), in any lattice

a ∧ b = (s ∨ u) ∧ (t ∨ u) ≥ u ∨ (s ∧ t) ≥ u

and hence by monotonicity of R: R(a ∧ b) ≥ R(u). Combining everything

R(s, u) + R(t, u) = R(a) + R(b) ≥ R(a ∨ b) + R(a ∧ b) ≥ R(s, t, u) + R(u),

where the first inequality uses submodularity of R.
(b) The first inequality follows from (a) by I(s : s|t, u) ≥ 0. The second inequality follows directly from
(a) and the definition of I . �

Lemma 2 (chain rule for mutual information) For s, t, u, x ∈ Ω

I(s : t ∨ u |x) = I(s : t |x) + I(s : u |t, x) . (3)

Proof: This is directly seen by using the definition of conditional mutual information on both sides.�

Lemma 3 (data processing inequality) Given s, t, x ∈ Ω it holds

R(s|t) = 0 ⇒ I(s : x |t) = 0 ⇒ I(s : x) ≤ I(t : x).

Proof: The first implication is clear. For the second we apply the chain rule for mutual information two times
and obtain

I(s : x) = I(s, t : x)− I(t : x |s) = I(t : x) + I(s : x |t)− I(t : x |s) ≤ I(t : x) ,

since the second summand is zero by assumption and conditional mutual information is non-negative. �

3 Submodular dependence measures and semi-graphoid axioms

The axiomatic approach to stochastic independence goes back to Dawid (1979) who stated four axioms of
conditional independence that are fulfilled for any kind of probability distribution. Later, any relation I on
triplets that satisfies the same axioms has been named semi-graphoid by Pearl (2000). It is easy to see that
the function I constructed from R in the last section satisfies these axioms.

Theorem 1 (I satisfies semi-graphoid axioms) The function I defined in the last section satisfies the semi-
graphoid axioms, namely for x, y, w, z ∈ Ω

(1) I(x : y |z) = 0 ⇒ I(y : x |z) = 0 (symmetry)

(2) I(x : y, w |z) = 0 ⇒
{

I(x : y |z) = 0
I(x : w |z)= 0

(decomposition)

(3) I(x : y, w |z) = 0 ⇒ I(x : y |z, w) = 0 (weak union)

(4)
I(x : w |z, y) = 0

I(x : y |z) = 0

}
⇒ I(x : w, y |z) = 0 (contraction)

Proof: Symmetry is clear and the remaining implications follow directly from the chain rule and non-
negativity. �

On the contrary, if we are given a function I : Ω × Ω × Ω → R+, what axioms do we need to define
a submodular information measure R from I? It turns out that the chain rule in eq. (3) together with non-
negativity I(a : b|c) ≥ 0 and symmetry I(a : b|c) = I(b : a|c) already implies that R(a) := I(a : a|0) is an
information measure and I coincides with the dependence measure introduced in Definition 2. We omit the
proof due to space constraints.



Thus we characterized the type of dependence measures that we are able to incorporate into our frame-
work. To conclude, note that the chain rule is actually a strong restriction. As an example consider the lattice
of linear subspaces of some finite vector space, where the join of two subspaces is the subspace generated
by the set-theoretic union and the intersection is just the set-theoretic intersection. An independence measure
can be defined by

I(a : b |c) = dim
(
a|c⊥

)∣∣(b|c⊥),
where a|b stands for the orthogonal projection of a onto b and c⊥ denotes the orthogonal complement of c.
This is a quantitative version of a notion of independence that satisfies the semi-graphoid axioms (Lauritzen,
1996) even though the chain rule does not hold.

4 Causal Markov condition for general information measures
In this section we define three versions of the causal Markov condition with respect to a general submodular
information measure and show that they are equivalent (similar to the statistical framework). Then we dis-
cuss under which conditions we expect it to be a reasonable postulate that links observations with causality.
Assume we are given observations x1, . . . , xk that are connected by a DAG. It is no restriction to consider
the observations as elements of a lattice, e.g. the lattice of their subsets.

Definition 3 (causal Markov condition (CMC), local version) Let G be a DAG that describes the causal
relations among observations x1, . . . , xk. Then the observations are said to fulfill the causal Markov condi-
tion with respect to the dependence measure I if

I(ndj : xj |paj) = 0 for all 1 ≤ j ≤ k,

where paj denotes the join of the parents of xj and ndj the join of its non-descendants (excluding the parents).

The intuitive meaning of the postulate is that conditioning on the direct causes of an observation screens
off its dependences from all its non-effects. The following theorem generalizes results in (Lauritzen, 1996)
for statistical independences and (Janzing & Schölkopf, 2007) for algorithmic independences. In particular it
states that if the causal Markov condition holds with respect to a graph G, then independence relations implied
by the CMC can be obtained through the convenient graph-theoretical criterion of d-separation (Pearl, 2000;
Spirtes et al., 2001). Two sets of nodes A and B of a DAG are d-separated given a set C disjoint from A and
B if every undirected path between A and B is blocked by C. A path that is described by the ordered tuple
of nodes (x1, x2, . . . , xr) with x1 ∈ A and xr ∈ B is blocked if at least one of the following is true

(1) there is an i such that xi ∈ C and xi−1 → xi → xi+1 or xi−1 ← xi ← xi+1 or xi−1 ← xi → xi+1 ,

(2) there is an i such that xi and its descendants are not in C and xi−1 → xi ← xi+1.

Theorem 2 (Equivalence of Markov conditions and information decomposition) Let the nodes x1, . . . , xk

of a DAG G be elements of some lattice Ω and R be an information measure on Ω. Then the following three
properties are equivalent

(1) x1, . . . , xk fulfill the (local) causal Markov condition.

(2) For every ancestral set2 A ⊆ {x1, . . . , xk}, R decomposes according to G:

R(A) =
∑
xi∈A

R(xi|pai).

(3) The global Markov condition holds, i.e., if two sets of nodes A and B are d-separated in G given a set
C disjoint from A and B, then(∨

a∈A

a

)
⊥⊥

(∨
b∈B

b

) ∣∣ (∨
c∈C

c

)
.

We omit the proof due to space constraints. The second condition shows that the joint information of
observations can be recursively computed according to the causal structure. The third condition describes
explicitly which sets of independences are implications of the causal Markov condition.

Our next Theorem will show that the CMC follows from a general notion of a functional model. At its
basis is the following Lemma describing that the CMC on a given set of observations can be derived from the
causal Markov condition with respect to an extended causal graph (see Figure 1).

2A set A of nodes of a DAG G is called ancestral, if for every v ∈ A the parents of v are in A too.
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Figure 1: On the left a causal model of four observations x1, . . . , x4 is shown together with the ’noise’ for each node.
In Lemma 4 it is shown that the causal Markov condition on this extended graph implies the CMC for x1, . . . , x4. On the
right hand side the functional model assumption is illustrated: The generation of xi from its parents pai and the ’noise’
does not produce additional information.

Lemma 4 (causal Markov condition from extended graph) Let the nodes x1, . . . , xk of a DAG G be el-
ements of a lattice Ω with an independence relation I that is monotone and satisfies the chain rule. If there
exist additional elements n1, . . . , nk ∈ Ω such that for all j

I(xj : ndj , n−j | paj, nj) = 0 , where n−j =
∨
i�=j

ni, (4)

and the nj are jointly independent in the sense that

I(nj : n−j) = 0 , (5)

then the x1, . . . , xk fulfill the causal Markov condition with respect to G.

Proof: Based on G we construct a new graph G ′ with node set {n1, . . . , nk}∪{x1, . . . , xk} and an additional
edge nj → xj for every j, (1 ≤ j ≤ k). We first show that the causal Markov condition holds for the nodes
of G′: By construction, the join of non-descendants nd ′

j of xj with respect to G′ is equal to n−j ∨ndj . Since
the join of the parents pa′

j of xj in G′ are paj ∨ nj , assumption (4) just states I(xj : nd′j |pa′
j) = 0 which is

the local CMC with respect to xj . To see that CMC also holds for nj , observe that the non-descendants of nj

are equal to the non-descendants of xj in G′ and since nj does not have any parents, we have to show

I(nj : nd′j) = 0. (6)

Using nd′
j = n−j ∨ ndj together with the chain rule for mutual information we get

I(nj : ndj , n−j) = I(nj : n−j) + I(nj : ndj |n−j) = I(nj : ndj |n−j),

where the last equality follows from (5). Let NDj = {xj1 , . . . , xjkj
} be the set of non-descendants of xj in

G. Note that NDj is ancestral, that is if x ∈ NDj , then so are the ancestors of x. We introduce a topological
order on NDj , such that if there is an edge xja → xjb

in G, then xja < xjb
. Using the chain rule for mutual

information iteratively we get

I(nj : ndj |n−j) =

kj∑
a=1

I
(
nj : xja |x(<)

ja
, n−j

)
,

where x
(<)
ja

denotes the join of elements of NDj smaller than xja . By choice of our ordering the mutual

information of nj and xja is conditioned at least on its parents and we can write x
(<a)
ja

= paja ∨ pac
ja

, where
pac

ja
is the join of elements smaller than xja in NDj that are not its parents. Therefore, again by the chain

rule, each summand on the right hand side can be bounded from above by writing

I
(
nj : xja |x(<a)

ja
, n−j

) ≤ I
(
n−ja , pac

ja
: xja |paja , nja

)
≤ I

(
n−ja , ndja : xja |paja , nja

)
= 0,

where the second inequality is true because by construction pa c
ja

is the join of non-descents of xja . The right
hand side vanishes because of assumption (4). This proves (6) and therefore the causal Markov condition
with respect to G′.
By Theorem 2, d-separation on G ′ implies independence. Due to the special structure of G ′ one can check
that d-separation in G implies d-separation in the extended graph G ′. Again by Theorem 2, d-separation
implies the causal Markov condition for G, which proves the lemma. �

Now we formalize the intuition that in a generalized functional model a node only contains information
that is already contained in the direct causes and the noise together (see Figure 1):



Definition 4 (functional model) Let G be a DAG with nodes x1, . . . , xk in the lattice Ω. If there exists an
additional node nj ∈ Ω for each xj , such that the nj are jointly independent and

R(xj , paj, nj) = R(paj, nj) for all j, (1 ≤ j ≤ k) (7)

then G together with n1, . . . , nk is called a functional model of the x1, . . . , xk.

If we restrict our attention to causal mechanism of the above form, the CMC is justified:

Theorem 3 (functional model implies CMC) If there exists a functional model for the nodes x1, . . . , xk of
a DAG G then they fulfill the causal Markov condition with respect to G.

Proof: In the functional model with noise nodes n i it holds R(xj , paj, nj) = R(paj , nj) for all j. This
implies I(ndj : xj |paj , nj) = 0. Since the nj in a functional model are assumed to be jointly independent,
Lemma 4 can be applied and proves the theorem. �

The following section describes examples of causal mechanisms that can be seen as functional models
with respect to various information measures.

5 Examples of information measures and their functional models

Let S = {x1, . . . , xk} be a finite set of observations which are in a canonical way elements of the lattice of
subsets (2S,∪,∩). Let the causal structure be a DAG with x1, . . . , xk as nodes.

5.1 Shannon entropy of random variables

Let the xi be discrete random variables with joint probability mass function p(x 1, . . . , xk). For a subset
A ⊆ {x1, . . . , xk} denote by xA := ×xi∈Axi the random variable with distribution pA := p((xi)xi∈A).
The Shannon entropy for the subset A is defined as H(A) := −Ep log pA. Monotonicity as well as sub-
modularity are well-known properties (Cover & Thomas, 2006). The corresponding notion of independence
is the familiar (conditional) stochastic independence, its information-theoretic quantification I being mutual
information. Then H(xi, pai, ni) = H(pai, ni) is equivalent to the existence of some function f i with

xi = fi(pai, ni) .

This restricts the set of mechanisms to those which were deterministic if one could take all latent factors into
account. Note that continuous Shannon entropy is not monotone under restriction to subsets. Nevertheless, in
this case the chain rule and non-negativity is true and therefore the CMC can be motivated by independences
with respect to an extended causal model (Lemma 4 of the previous section).

5.2 Kolmogorov complexity of binary strings

Let the xi be binary strings and the information measure be the Kolmogorov complexity as information
measure. More explicitly, for a subset of strings A ⊆ S denote by xA a concatenation of the strings in a
prefix free manner (which guarantees that the concatenation can be uniquely decoded into its components).
The Kolmogorov complexity K(xA) is then defined as the length of the shortest program that generates
the concatenated string xA on a universal prefix-free Turing machine. It is submodular up to a logarithmic
constant (Hammer et al., 2000). For two strings s, t the conditional Kolmogorov complexity K(s|t) of
s, given t is defined as the length of the shortest program that computes s from the input t. It must be
distinguished from K(s|t∗), the length of the shortest program that computes s from the shortest compression
of t. Note that defining R(s) := K(s) implies that the conditional information reads R(s|t) = K(s|t ∗) due
to (Chaitin, 1975)

K(s, t)
+
= K(t) + K(s|t∗) ,

see also (Gács et al., 2001). Then

K(xi, pai, ni)
+
= K(pai, ni) is equivalent to K(xi|(pai, ni)

∗) +
= 0 ,

which, in turn, is equivalent to the existence of a program of length O(1) that computes x i from the shortest
compression of (pai, ni). Here we have considered the number k of nodes as a constant, which ensures that
the order of the strings does not matter. Such an “algorithmic model of causality”(Janzing & Schölkopf,
2007) restricts causal influences to computable ones. Uncomputable mechanisms can easily be defined (as
in the halting problem). However, in the spirit of the Church-Turing thesis, we will assume that they don’t
exist in nature and conjecture that the algorithmic model of causality is the most general model of a causal
mechanism as long as we restrict the attention to the non-quantum world (where the model could be replaced
with a quantum Turing machine).



5.3 Period length of time series

We now present an example of an information measure on a lattice of observations different from the lattice
of subsets. Let every observation be a natural number x i ∈ N and consider them elements of the lattice of
natural numbers where ∨ denotes the least common multiple and ∧ the greatest common divisor, hence for
S ⊆ {x1, . . . , xk}

xS := ∨xi∈Sxi := lcm(S) .

We define an information measure by
R(xS) := log xS .

Non-negativity and monotonicity of R are clear and submodularity even holds with equality: For a, b ∈ N

R(a ∨ b) + R(a ∧ b) = log lcm(a, b) + log gcd(a, b) = log
ab

gcd(a, b)
+ log gcd(a, b)

= R(a) + R(b).

The corresponding conditional dependence measure reads

I(a : b|c) = R
(
gcd(a, b)/gcd(a, b, c)

)
= log gcd(a, b)− log gcd(a, b, c),

so a and b are independent given c if c contains all prime factors that are shared by a and b (with at least the
same multiplicity).
We define a functional model where every node x i contains only prime factors that are already contained
in its parents and its noise node (with at least the same multiplicity) and the noise terms are assumed to be
relatively prime.

Such a lattice of observations can occur in real-life if x i denotes the period length of a periodic time series
over Z. Then the period length of the joint time series defined by a set of nodes is obviously the least common
multiple. If every time series at node i is a function F i of its parents and noise node (each being a time series)
and Fi is time-covariant, xi divides their period lengths.

Assuming that the period lengths of the noise time series are relatively prime is indeed a strong restriction,
but if we assume that the periods are large numbers and interpret independence in the approximate sense

log lcm(x1, . . . , xk) ≈
k∑

i=1

log xi ,

we obtain the condition that their periods have no large factors in common. This seems to be a reasonable
assumption if the noise time series have no common cause.

One can easily think of generalizations where every observation x i is characterized by a symmetry group
and the join of nodes by the group intersection describing the joint symmetry. One may then define functional
models where every node inherits all those symmetries that are shared by all its parents and the noise node.

5.4 Size of vocabulary in a text

Let every observation xi be a text and for every collection of texts S ⊆ {x1, . . . , xk} let R(S) be the
number of different meaningful words in S. Here, meaningful means that we ignore words like articles and
prepositions. To see that R is submodular we observe that it is just the number of elements of a set.

We can use R to explore which author has copied parts of the texts written by other authors: Let every x i

be written by another author and a causal arrow from x i to xj means that the author of xi was influenced by
xi when writing xj .

The noise ni can be interpreted as the set of words the author usually uses and the condition R(x i, pai, ni)
= R(pai, ni) then means that he/she combines only words from the texts he/she has seen with the own
vocabulary.

To conclude this section we want to emphasize that the above example refers to a dependence measure that
is non-increasing under conditioning, that is for collections S, T, U and V of texts I(S : T |U) ≥ I(S : T |V )
whenever U ⊆ V . This is because I(S : T |U) is equal to the number of meaningful words contained in S
and T , but not in U .3 We will elaborate on this point in the next section because it imposes special challenges
for causal inference.

3In general, the above information measure can be viewed as rank or height function on the lattice of sets of meaningful
words and it can be shown that dependence measures originating from information functions that are rank functions on
distributive lattices are always non-increasing under conditioning.



6 Faithfulness for monotone dependence measures

Apart from the CMC, the essential postulate of independence based causal inference is usually causal faith-
fulness. It states that all observed independence relations are structural, that is, they are induced by the true
causal DAG through d-separation. This postulate allows the identification of causal DAGs up to “Markov
equivalence classes” imposing the same independences.

Faithfulness has already been defined for abstract conditional independence statements and we start by
rephrasing the definition following (Spirtes et al. (2001), p.81).

Definition 5 (faithfulness) A DAG G is said to represent a set of conditional independence relations L on
a set of observations X faithfully, if L consists exactly of the independence relations implied by G through
d-separation. Further, a set of observations X is said to be faithful (w.r.t. a given dependence measure), if
there exists a causal DAG that represents X faithfully.

The above definition of faithfulness makes sense for the probabilistic and algorithmic notions of dependence,
but there is a problem with respect to dependence measures on which conditioning can only decrease infor-
mation. As mentioned above, rank functions of distributive lattices lead to this kind of dependence measures,
that we will call monotone in the following. To see the problem, consider for three observations a, b, c a
causal DAG G of the form a → b ← c. By d-separation, a is independent of c and for a monotone de-
pendence measure this implies a ⊥⊥ c |b, which is not an independence induced by d-separation. Hence, G
does not faithfully represent the objects and one can easily check that a faithful representation does not exist
(e.g. using the theorem below). However, we can modify faithfulness such that it also accounts for those
independences that follow from monotonicity under conditioning:

Definition 6 (monotone faithfulness) A DAG G is said to represent a set L of conditional independences of
observations X monotonically faithful, if the following condition is true for all disjoint subsets S, T, U ⊆ X
whose join is denoted by s, t and u: Whenever s ⊥⊥ t |u is in L and u is minimal among all the sets that
render s and t independent, then s and t are d-separated by u in G. Further, a set of observations X is said
to be monotonically faithful (w.r.t. a given dependence measure), if there exists a causal DAG that represents
X monotonically faithful.

Note that, trivially, every faithful representation is a monotonically faithful representation, hence faithful ob-
servations are monotonically faithful observations. Faithful representations have already been characterized
(Theorem 3.4 in (Spirtes et al., 2001)) and we prove an equivalent characterization that holds simultaneously
for monotonically faithful and for faithful observations.

Theorem 4 (characterization of monotonically faithful representations) A set of (monotonically) faithful
observations X is represented (monotonically) faithfully by a DAG G if and only if (1) and (2) holds, where:

(1) two observations a and b are adjacent in G if and only if they can not be made independent by condi-
tioning on any join of observations in X\{a, b}.

(2) for three observations a, b, c, such that a is adjacent to b, b is adjacent to c and a is not adjacent to c, it
holds that a → b ← c in G if and only if there exists a set U ⊆ X\{a, b, c} such that a is independent
of c given the join of the observations in U .

We omit the proof due to space constraints. The theorem implies in particular, that every monotonically
faithful representation of faithful objects is already a faithful representation.
The PC algorithm (Spirtes & Glymour, 1991; Spirtes et al., 2001) for causal inference takes a set of condi-
tional independences on faithful objects and returns the equivalence class of faithful representations. Since
the above theorem is used to prove the correctness of the algorithm in the faithful case, we conclude that the
algorithm correctly returns monotonically faithful representations given monotonically faithful observations.
We apply the PC-algorithm with respect to compression based information functions in the following section.
Also they are not monotone in a strict theoretical sense, empirical observations indicate that it is unlikely for
the mutual information to increase.

7 Compression based information

In this section we demonstrate that our framework enables us to do causal inference on single objects (coded
as binary strings) without relying on the uncomputable measure of Kolmogorov complexity. To this end,
instead of defining complexity with respect to a universal Turing machine we explicitly limit ourselves to
specific production processes of strings. The underlying measure of information is motivated by universal
compression algorithms like LZ77 (Ziv & Lempel, 1977) and grammar based compression (Yang & Kieffer,
2000) that detect repeated occurrences of identical substrings within a given input string and encode them



more efficiently. The choice of a compression scheme can be seen as a prior analogously to the choice of
a universal Turing machine in the case of algorithmic information. The measures considered in this section
quantifiy the information of an observation (string) in terms of the diversity of its substrings and entail the
following assumption on causal processes: A mechanism that produces a string y from a string x is considered
as simple, if it constructs y by concatenating a small number of substrings from x (see Lemma 6 below for a
formal statement). Further, the amount of dependence of observations is approximately given by the number
of substrings that they share.

We are going to describe two specific measures of information that are closely related to the total length
of the compressed string, but have better formal properties than the latter. This way our conclusions will
be independent of the actual implementation of the compression scheme and proving theoretical results gets
easier.
In the last part of this section we describe experiments on real data in which the PC algorithm is applied to
infer the causal structure using either of the two introduced measures of information.
Note that distance metrics based on compression length have already been used to cluster various kinds of data
(see (Cilibrasi & Vitányi, 2005) for computable distance metrics motivated by algorithmic mutual information
or (Hanus et al., 2007) for an application to molecular biology). These metrics can be used to reconstruct trees
(hierarchical clustering) but if two nodes are linked by more than one path a measure of conditional mutual
information is needed to reconstruct the data-generation process. To the best of our knowledge, methods that
rely on compression based conditional mutual information have not been used before to infer non-tree-like
DAGs.

7.1 Lempel-Ziv information (LZ-information)

LZ-information has been introduced as a complexity measure for strings in (Ziv & Lempel, 1976). It has
been applied to quantify the complexity of time series in biomedical signal analysis (Aboy et al., 2006) and
distance measures based on versions of LZ-information have been used to analyze neural spike train data
(Blanc et al., 2008) and to reconstruct phylogenetic trees (Zhen et al., 2009). We start by defining

Definition 7 (production and reproduction from prefix) Let s = xy be a string. We say s is reproducible
from its prefix x and write x → s if y is a substring of xy, where y is equal to y without its last symbol. We
say s is producible from x and write x⇒ s if x→ s, where s is equal to s without its last symbol.

Contrary to reproducibility, producibility allows for the generation of new substrings, for if x ⇒ s, the last
symbol of s can be arbitrary.

s = 0 0 1 0 1 0 0
x y

new Example: For a given string s = xy let s be the string without its last symbol.
The figure on the left shows that s is producible from its prefix x by copying the
second symbol of x to the first of y and so on. The string s itself is not producible
from x, but reproducible.

Informally, LZ-information counts the minimal number of times during the process of parsing the input string
from left to right, in which the string can not be reproduced from its prefix and a production step is needed.

Definition 8 (LZ-information, (Ziv & Lempel, 1976)) Let s be a string of length n. Denote by s i the i-th
symbol of s and by s(i, j) the substring sisi+1 · · · sj . A production history Hs of s is a partition of s into
substrings s = s(h0, h1)s(h1 + 1, h2) · · · s(hk + 1, hk+1) with h0 = 1 and hk+1 = n, such that

s(1, hi)⇒ s(1, hi+1) for all i ∈ {1, . . . , k}.
A history Hs is called exhaustive if additionally

s(1, hi) �→ s(1, hi+1) for all i ∈ {1, . . . , k − 1}.
The substrings s(hi + 1, hi+1), (0 ≤ i ≤ k) will be called components of Hs and the length |Hs| of Hs is
defined as the number of its components.
The LZ-information of s, denoted by c(s), is defined as the length of its (unique) exhaustive history.

In an exhaustive history, each hi is chosen maximal such that s(1, hi − 1) is reproducible from its prefix
s(1, hi−1). As an example, for s = 000100101100110 the exhaustive history partitions s into

s = (0)(001)(00101)(10011)(0),

hence c(s) = 5.
In the original paper of Ziv and Lempel (1976) it was shown that c is subadditive: for two strings x and y
the information of the concatenated string xy is at most the information of x plus the information of y. This
already suggests to define the non-negative unconditional dependency measure i(x : y) = c(x)+c(y)−c(xy).
As it turns out, non-negativity of conditional information holds up to a negligible constant independent of the
involved string lengths:



Lemma 5 (non-negativity of conditional LZ-information, asymmetric version) Let x, y, z be finite strings
over some alphabet A. Further let α and β be symbols not contained in A that will be used as separators.
Then

i(x : y|z) := c(zαx) + c(zαy)− c(zαxβy)− c(z) ≥ −1. (8)

Proof: Let Ezα be the exhaustive history of zα. The exhaustive history of zαx is of the form E zαx =
[Ezα, Ex|z], where Ex|z describes the partition of x induced by Ezαx. This is because α is not part of
the alphabet, hence the component in Ezαx containing α must be of the form (tα) for some substring t.
Analogously Ezαy = [Ezα, Ey|z]. It is not difficult to see that

Hzαxβy = [Ezα, Ex|z, β, Ey|z].
is a production history of zαxβy. Theorem 1 in (Ziv & Lempel, 1976) states that a production history is at
least as long as the exhaustive history, hence∣∣[Ezα, Ex|z, β, Ey|z]

∣∣ ≥ |Ezαxβy| = c(zαxβy),

Further, c(z) ≤ |Ezα| and so (8) can be bounded from below by

c(zαx) + c(zαy)− c(zαxβy)− c(z) ≥ ∣∣[Ezα, Ex|z]
∣∣+ ∣∣[Ezα, Ey|z]

∣∣− ∣∣[Ezα, Ex|z, β, Ey|z]
∣∣− |Ez |

= −1.

�

The above Lemma shows, that for two sets of strings A = {z, x} and B = {z, y} the LZ-information of
A ∪B and A ∩B (represented by the information of strings zαxβy and z) exceeds the LZ-information of A
and B (represented by the information of the strings zαx and zαy) by at most one. This can be interpreted
as approximate ’submodularity’ with respect to A and B.
Within the functional models introduced before a node x i was assumed to contain at most as much informa-
tion as its parents pai and an independent noise ni. The following Lemma states that if xi is produced by con-
catenating complex substrings of pai and ni, this is approximately the case with respect to LZ-information.

Lemma 6 (functional model for LZ-information, asymmetric version) Let pai and ni be two strings over
an alphabetA and construct a third string string xi by concatenating k substrings of pai and ni. Then

c(pai α ni β xi) ≤ c(pai α niβ) + k,

where α and β are symbols not in A used as separators.

Proof: A production history of pa iαniβxi can be generated by concatenating the exhaustive history of
paiαniβ with the list of the at most k substrings out of which xi is constructed. The length of this his-
tory is c(paiαni) + k + 1 and bounds c(paiαniβxi) from above by Theorem 1 in (Ziv & Lempel, 1976). �

In particular, if xy is producible from x, by appending y, the information is at most increased by one.
Hence, if we restrict the mechanisms that generate a node to consist of a limited number of concatenations
of substrings from its parents and the independent noise (compared to the amounts of information involved)
the causal Markov condition would follow if c were an information function. This is not the case since c
is not defined on sets of strings (in particular it is not symmetric (c(xy) �= c(yx)), therefore we define the
LZ-information of a set of strings to be the LZ-information of their concatenation with respect to a given
order (e.g. lexicographic).

Definition 9 (LZ-information, set version) Let {x1, . . . , xk} be a set of strings over some alphabet A.
Choose k distinct symbols α1, . . . , αk not contained in A that will be used as separators.
Let X = {xi1 , . . . , xim} be a subset and assume xi1 ≤ xi2 ≤ . . . ≤ xim with respect to a given order on the
set of strings over A. We define the LZ-information of X as

LZ(X) = c
(
xi1 αi1 · · ·xim αim

)
,

where the argument of c is understood as the concatenation of the strings.

LZ is not monotone and submodular in a strict sense. However, empirical observations suggest that for suf-
ficiently large strings the violations of submodularity induced by the asymmetries like c(xαy) �= c(yαx) are
negligible compared to the amounts of information.

Hypothesis: For practical purposes LZ(·) is an information measure up to constants that are negligible
compared to the amounts of information of the strings involved. The associated independence measure I is
monotonically decreasing (through conditioning).

We close by mentioning that the calculation of the LZ-information is very inefficient for large strings
since one has to search over all substrings of the part of the string already parsed. In our implementation we
therefore considered only substrings of length limited by a constant (we chose 30 for strings of English text,
since it is unlikely that a substring of length 30 is repeated exactly).



7.2 Grammar based information

In the grammar based approach to compression an input string x is transformed into a context-free grammar
that generates x. This grammar is then compressed for example using arithmetic codes. We discuss this
approach because it has been successfully applied to compress RNA data (e.g. (Liu et al., 2008)). Further
the LZ-based compression discussed in the previous section can be rephrased into this framework. As there
are many grammars that produce a given string, it is essential that the transformation of strings to grammars
produces economic representations of x (for an overview see (Lehman & Shelat, 2002)) We implemented the
so called greedy grammar transform from Yang and Kieffer (2000). It constructs the grammar iteratively by
parsing the input string x. Due to space restrictions we just give an example of a string and its generated
grammar.
Example: The binary string x = 1001110001000 is transformed using the greedy grammar transform from
Yang and Kieffer (2000) to the grammar G(x) :

s0 → s111s2s2

s1 → 100

s2 → s10,

where s0, s1 and s2 are variables of the grammar and x can be reconstructed by starting from s 0 and then
iteratively substituting si by the right hand side of each production rule above. The length of a grammar
|G(x)| is defined as the sum of all symbols on the right of every production rule, so for the above example
|G(x)| = 10. We view the length of the constructed grammar as information measure of the string that it
produces and define analog to the LZ-information

Definition 10 (grammar based information) Let {x1, . . . , xk} be a set of strings over some alphabet A.
Choose k distinct symbols α1, . . . , αk not contained in A that will be used as separators.
Let X = {xi1 , . . . , xim} be a subset and assume xi1 ≤ xi2 ≤ . . . ≤ xim with respect to a given order on the
set of strings over A. We define the grammar based information of X as

GR(X) =
∣∣G(xi1 αi1 · · ·xim αim

)∣∣,
where the input of the grammar construction G is understood as the concatenation of the strings.

By definition GR is non-negative. However, experiments show that submodularity is violated, but the amount
of violation still allows to draw causal conclusions for sufficiently large strings.

7.3 Experiments

This section reports the results on causal inference using the introduced LZ-information and grammar based
information measures. Matlab code of the algorithms used in the experiments can be downloaded from the
homepage of the first author.

Experiment 1: Markov chains of English texts
We start with a string of English text s0 from which we construct further strings s1, . . . , sk as follows: To
generate si+1 we translate si using an automatic translator from Google4 to a randomly chosen European
language. Then si+1 is defined as the string that we obtain when we translate si back to English using the
same translator. Since si+1 is determined by si, the process can be modeled by a ’Markov’ chain s 0 → · · · →
sk. We then apply the PC algorithm5 to infer the corresponding equivalence class of (monotonically) faithful
causal models consisting of the DAGs:

s0 ← · · · ← si → · · · → sk for 0 ≤ i ≤ k.

In our experiments we chose several starting texts of 1000 to 5000 symbols (e.g. news articles and the
abstract of this paper) and generated three strings (k = 3) using the described procedure. In every string we
transformed all non-space characters to numbers 0, . . . , 8 using a modulo operation on the ASCII value to
reduce the alphabet size. Repeated spaces were deleted and the space character has been encoded separately
by the number 9 to ensure that words of the string remain separated.
Results: Based on the two information measures, the PC algorithm returned the correct class of DAGs in
every case. For LZ-information the chosen threshold used to determine independence did not even have to
depend on the starting texts s0. Grammar based information seems to be more sensitive to the string lengths
involved and we had to choose a different threshold for every chosen text s 0. Further, we successfully tried
the method on the chain of preliminary versions of the abstract of this paper.

4accessible at http://translate.google.de/
5Our implementation of the PC algorithm for causal inference was based on the BNT-Toolbox for Matlab written by

Kevin Murphy and available at http://code.google.com/p/bnt/.



Finally note that methods based on compression distance could also be applied to recover the correct
equivalence class. The crucial difference to our approach consists in the fact that we did not have to assume
that the underlying graph is a tree.

Experiment 2: Four-node networks
We want to infer the equivalence classes of (monotonically) faithful causal models depicted in Figures (a)
and (b) below. To this end we randomly choose segments of a large English text and then construct the
strings corresponding to the nodes a, b, c and d in a way that ensures the resulting observation {a, b, c, d} to
be (monotonically) faithful. Explicitely, we choose segments sx and sxy for each node x and for each edge
between nodes x and y respectively. Further, for every ordered triple of nodes (x, y, z) whose subgraph is
not equal to x → y ← z, we pick a segment sxyz. This way we obtain the following segments with respect
to the graph in Figure (a):

sa, sb, sc, sd, sab, sac, sbd, scd, sbac, sabd, sacd

and with respect to the graph in Figure (b) we get segments

sa, sb, sc, sd, sac, sad, sbc, sbd, scad, scbd.

Finally, the string at a node is constructed as the concatenation of all segments that contain the name of the
node in its index (the order is arbitrary), e.g. in the case of Figure (a)

b = sbsabsbdsbacsabd.

As text source we chose an English version of Anna Karenina by Lev Tolstoi 6. We then transformed all
non-space characters to numbers from 0, . . . , 8 using a modulo operation on the ASCII value to reduce the
size of the alphabet. Repeated spaces were deleted and the space character has been encoded separately by
the number 9 to ensure that words of the string remain separated. The resulting string consisted of a total of
approximately two million symbols. Using the above construction, we generated 100 observations {a, b, c, d}
with respect to each graph and applied the PC algorithm. The length N of the randomly chosen segments
was chosen uniformly between 100 and 200 in the first run and between 300 and 500 in the second run. The
choice of the threshold to determine independence depended only on the information measure and on the
two possible ranges of N , but not on the individual observations. Further, the graph of Figure (b) implies an
unconditional independence of a and b. Since two disjoint segments of English text can not be expected to be
independent, we conditioned all informations that we calculate on background knowledge in terms of fixed
segment of length 5000.

(a)
b

a

c

d

Correct answers of PC:
N ∈ [100, 200]
LZ : 98%
GR : 53%

N ∈ [300, 500]
LZ : 100%
GR : 56%

(b)
c

a

d

b

Correct answers of PC:
N ∈ [100, 200]
LZ : 95%
GR : 97%

N ∈ [300, 500]
LZ : 100%
GR : 99%

Results: Above, the percentages of correct results from the PC-algorithm are shown. Note that using LZ-
information we were able to recover the correct equivalence class in almost all runs independently of the
graph structure and segment length. Grammar based inference did not perform quite as well, but in the
majority of cases in which it did not return the correct Markov equivalence class most of the independences
still were detected correctly.

8 Conclusions

We have introduced conditional dependence measures that originate from submodular measures of infor-
mation. We argued that these notions of conditional dependence (generalizing statistical dependence) can
be used to infer the causal structure among observations even if the latter are not generated by i.i.d. sam-
pling. To this end, we formulated a generalized causal Markov condition (with significant formal analogies
to the statistical one) and proved that the condition is justified provided that the attention is restricted to a
class of causal mechanisms that depends on the underlying measure of information. We demonstrated that
existing compression schemes like Lempel-Ziv define interesting notions of information and described the
class of mechanisms that justify the causal Markov condition in this case. Accordingly, we showed that the
PC-algorithm successfully infers causal relations among texts when based on a notion of dependence that is
induced by compression schemes.

6The text is available at http://www.gutenberg.org/etext/1399.
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